如何做好数据精细化分析,让你的运营效果指数(3)

2017-10-17 11:29

如何做好数据精细化分析,让你的运营效果指数

4、综合流量大小、激活、转化等进行渠道的优化配置

接下来,我们就可以按照访问来源来分析每个渠道的激活转化率了。在上图的这个例子中,我们可以看到,对于不同渠道引流的用户,注册激活转化率有较大的差异。

通过这样的分析,我们就能够进一步深入了解不同渠道的差距。比如下图,这几个渠道中,除了好123以外,在转化的第二步之后的转化率的量级,其实是相差不多的。在第一步和第二步之间的这个转化率,有较大的差异。

如何做好数据精细化分析,让你的运营效果指数

转化的第一步,一般来讲是一个转化开始的意愿判断。所以我们可以大概地去定位客群特征,并去做推广话术和方法的差异化。对于比如说像好123这个渠道,是一个访问量很大,但是基本上没有转化的渠道。这个时候,我们就需要进一步去对比投放的目标,是想去增加大部分的曝光,还是希望能够精准触达目标的客群,来进一步进行渠道投放的评估。

除此之外,有时候不同渠道整体转化率的差异并不是很大,但是在每一步的转化率上面存在一些差异。尤其是一些垂直行业,特定的推广渠道,目标客群的需求和特征是不一样的。在一定程度上,这些目标客群的区别,就会影响这个核心的转化行为。

所以对转化漏斗分渠道进行分析,我们也可以进一步看到,不同的导流渠道来访的用户,中间的行为是否存在差异,甚至以此来推断客群的特征,并判断是否可以去做一些差异化的运营。


用户运营

用户运营,就是建立和维护用户的关系。建立和维护用户的关系,手段有很多。但是衡量的指标,对于互联网产品来讲,大部分都会关注用户的留存,只有用户留存在产品上,才能进一步去推广用户进行变现甚至转化,以及甚至多次的变现转化。

同时我们也才可以进一步建立用户和产品长期的关系,方便用户进一步进行推荐和传播。我们也会从留存和用户运营这两个方面,来给大家分享,我们进行用户运营的一些分析的方法。

1、用户留存分析

留存分析,一般采用的分析方法叫组群分析法,即对拥有相同特征的人群,在一定时间范围内的行为去进行分析。

不同时间来的客户,由于所在产品的不同生命周期,或者运营周期中,以及产品使用的时间也不尽相同。所以需要从时间上对用户进行组群的初步划分。如下图,是一个基本的时间划分组群的新用户周留存图。

如何做好数据精细化分析,让你的运营效果指数

从横向比较来说,我们可以看出,每周新增用户,在后续各周的留存情况。

从纵向比较,我们可以看到不同周新增用户,分别在当周下周再下周等的留存表现。

接下来我们可以对每一个时间周期的数据进行加权平均,就能够得到一个时期内,大致新用户的留存曲线。得到留存曲线后,我们就可以对产品一段时间内整体留存情况,有一个大概的认知了。那么接下来就要去通过精细化的运营和策略,来提升留存曲线。

上一篇:一号店APP摊上事 原因是买ASO评论后不结帐? 下一篇:外国高手是怎么看待ASO优化的?
分享到:
收藏
相关阅读